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Standardized and Modular Open Systems

Approach to BCI

= Common advantages
» Ensures interoperable and complimentary components
» Enhances commonality and reuse of components

» Accelerates development and integration by eliminating
redundant efforts (DT&E); assured performance

» Reduces cost through increased commercial competition

» Adapts quickly to evolving technology and capabilities (Tech
Refresh)

» Accelerates scientific discovery (vice engineering)

= Establishes development and integration aids
> Common test beds and development environments
> Affords system and component simulators

> Provides specifications for procuring components and
capabilities




The Challenge

= Sources = Signal Characteristics
> EEG » Quantity / Channels /
> ECOG Bandwidth
> Cortical Arrays / Areas Type, Duration,
> Peripheral Nerve Arrays (Efferent / Frequency, Amplitude

Afferent)
Non-lnvasive?

Fidelity
Spatial Resolution

EMG / Intramuscular Temporal Resolution
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Purpose / Intent

Targeted Relnnervation
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Augmented Controls

Other Considerations: Regulatory framework for modular designs...




Relevant Work in BCl System Architectures:

Revolutionizing Prosthetics

= DARPA’s Revolutionizing Prosthetics (RP)
> APL is one of two prime performing institutions

> Generate arevolutionary system to restore functionality
to amputees and SCI patients

= We adopted concepts of a modular open system
approach

> Modular Prosthetic Limb (MPL)

— State of the art prosthetic device
> Virtual Integration Environment

— Surrogate to the MPL for development and testing
> Architecture definition and capture

— Neural Interfaces ICD

. Provides for a common neural data format and
interface definition

— MPL UDP ICD

» Our architecture definition has allowed us to rapidly
integrate technologies for patient care

> EMG

— Conventional myoelectric control, pattern recognition,
and IMES

— Targeted Muscle/Sensory Reinnervation

— Tactile feedback
> Cortical BCls

— Utah arrays, ECoG arrays, IMES

— Tactile/proprioceptive feedback
» Assistive technologies

— Eye tracking, heads up displays, voice recognition
> Upper limb implant osseointegration




Virtual Integration Environment
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= Complete limb system simulation environment
Supports engineering development

Neural signal acquisition / analysis

Algorithm development

Mechanical approach evaluation

Patient training / therapeutic applications

System performance validation and design compliance
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= End-to-end interactive simulation
» Acquires control signals (myoelectric, mechanical, neural, other)

» Signal Analysis: Interprets the intention

> Controls: Translates intention into movement of a virtual limb

» Allows the user to interact with objects with feedback (haptics or
other)

» 2D and 3D visual perspective of virtual world

Real-Time physics engine support
— Grasping, orienting, placing of objects
— Contact, force, torque and slip perception
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= Modular and configurable
Support various limb models and control algorithms
Engineering test bed for improvement of these designs

Evaluate patient interfaces for control signal extraction and
sensory feedback

> Build scenarios from custom and commercial objects




Revolutionizing Prosthetics — Control Approaches

Neural Stimulation

Quadriplegia, Spinal Cord Injury
» BCI, Hybrid Control

» Sensory Stimulation
Neural Recording

ALS, Muscular Dystrophy

> Hybrid Controls Eye Tracking

k— Visual Feedback
%—-—-—> Muscle Recording

Trans-Radial/Humeral Amputation
» SEMG Control
» Haptic Feedback (TMR)

Bilateral Amputation Kinematic Tracking

> Bimanual sEMG Control

> Haptic Feedback (TMR) dback
Haptic Feedbac
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Closed Loop Experimental Interfaces

= Multiple inputs possible
= Bi-Directional / closed-loop
= Virtual (VIE) and physical (MPL) simultaneous operation

Tactile-Stimulation {— Arm/Hand Percepts:

Neural-Stimulation (— Contact (hand, fingers) )

Force (fingers)
Position

Velocity l/
Neural-Recording | Arm/Hand Comma
Eye Tracking _> Position Control

Velocity Control

Muscle-Recording > End Point Control (s-DoF)
\ Kinematic Tracking ==  Configurable Grasp Patterns é
L G

Environment

Simple Interface and Format AA
Environment World  Taskcontrol
Constructlon Interface cyes
perator
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Modular Control Interfaces
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Systems Engineering Approach to Open Architectures:

AEODRS Case Study

» The Advanced Explosive Ordnance Disposal Robotic System (AEODRYS)

» Navy program of record - govt owned and mandated modular open systems
architecture for a family of Robotic Systems

» APL is lead systems integrator

= An open architecture approach enables interoperability and facilitates rapid
technology integration, development, and collaboration

System Capabilities
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MICrONS — Neural Connectomics Investigation

= Machine Intelligence from Cortical Networks (MICrONS)

» Revolutionize machine learning by reverse-engineering the algorithms of
the brain used for processing data

» Neural anatomy & physiology + Connectivity -> Neural Circuit

» Neural Circuit understand will lead to new methods for processing data (e.g.
visual, auditory, semantic) and machine learning algorithms

= Program will generate multiple data types
» Neural Anatomy (images, structural data)

> Neural Physiology (electrophys., time series data)
» Neural Graph Reconstructions
» Neural Cell & Tissue Morphologies, Annotations




MICrONS — Data Storage Systems Engineering

= Challenge

» Massive multi-dimensional neuroimaging datasets are challenging to store,
access, and process

» Image data is too big to analyze and extract neuronal network structure by hand

= Approach

> Leverage Amazon Web Services to develop a cloud database service that can
scale to petabytes while minimizing cost and maximizing performance

» Develop RESTful interfaces to accommodate data access, and leverage cloud
services to utilize computer vision and machine learning to automatically
estimate neuronal network structure in the image data




The Recipe

= Modular architecture recipe

>

>

Define capability or development modules
— Functional decomposition into definable units
— Establishes physical implementation
« Current technology and forward looking
Define and document the interfaces
— Leverage existing standards/conventions
— Defined at three primary levels
* Logical (data structures, message definitions, and formatting)

« Physical (interconnects, mounting footprints, size, weight, volumetric space
claims)

- Electrical (voltage, current, connector pinout designations, signal
type/protocol and characteristics)

= This recipe has transcended problem domains

>

MDA'’s Kill Vehicle Modular Open Arch — defensive technology

» SOCOM TALOS Exoskeleton System
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Joint Military Communication Systems (JCAUS)

DARPA Squad X Infrastructure Study

JHMI ICU - EMERGE

MICRONS - focuses on standardization/sharing of neural data and “circuits”




How do we get there?

= Define the “types” of BCI
» Define the characteristics
* Instantiate known examples

growth

* Define standards (interfaces, functional

performance, etc)

Incorporate / accommodate future
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Figure 1 System context of interfaces described in this document (drawn as bold red lines).
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